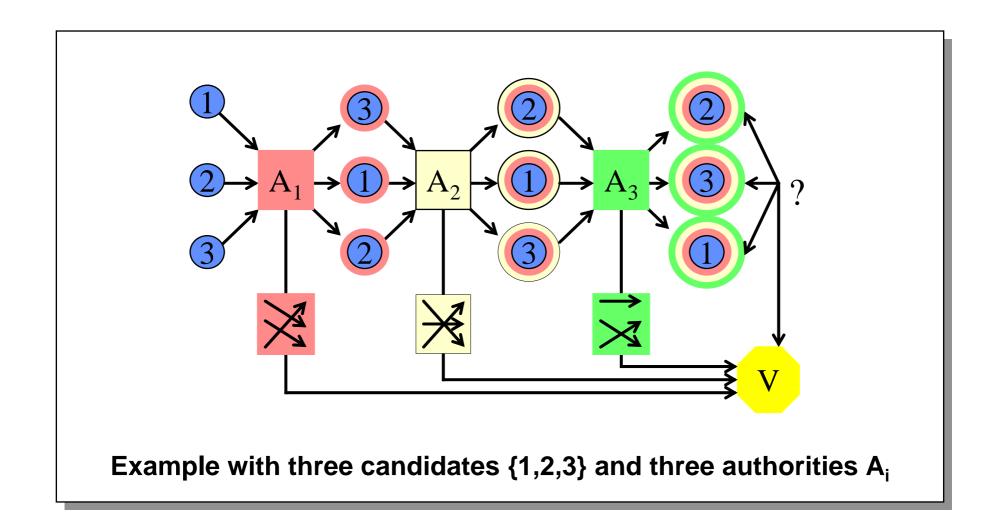


Coercion-Resistant Electronic Elections with Observer

Jörn Schweisgut


University of Giessen Germany

Overview

- Hirt and Sako's Voting Scheme [HS00]
- Observer: A Tamper-Resistant Hardware Device
- Receipt-Free Electronic Voting with Observer
- Coercion-Resistance [JCJ05]
- Efficient Receipt-Free Electronic Voting with Observer [Sch06a]
- Coercion-Resistant Observer-based Electronic Voting [Sch06b]
- Use of an Observer advantages

Hirt and Sako's voting scheme [HS00]

Observer: A Tamper-Resistant Hardware Device

Disadvantages of [HS00]

- requires a physically secure channel from each authority to each voter (impossible to achieve by encryption)
- not very efficient: designated-verifier and witness-indistinguishable proofs of correct permutation and re-encryption must be performed by each authority

Solution:

 an "observer" – a tamper-resistant hardware device in possession of the voter

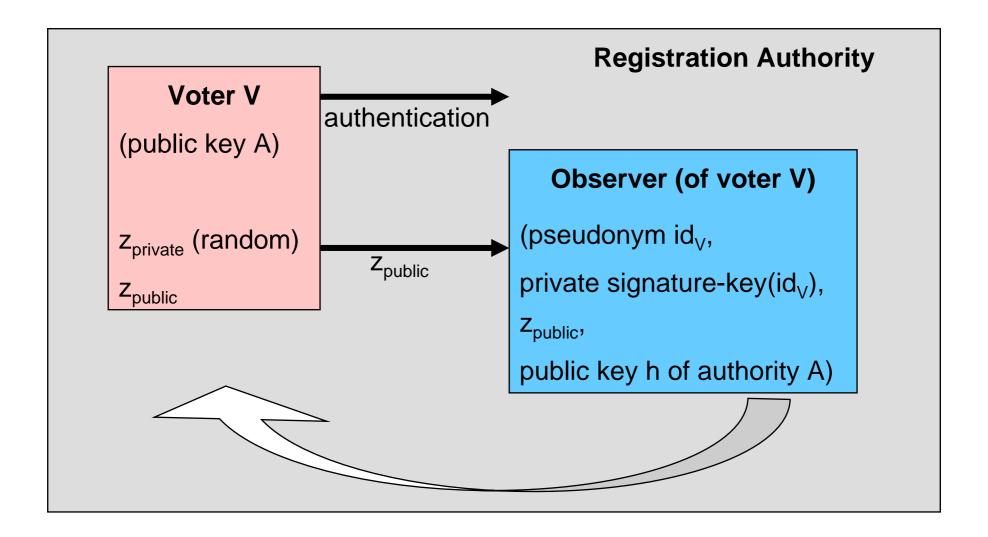
Receipt-Free Electronic Voting with Observer

[Sch05]

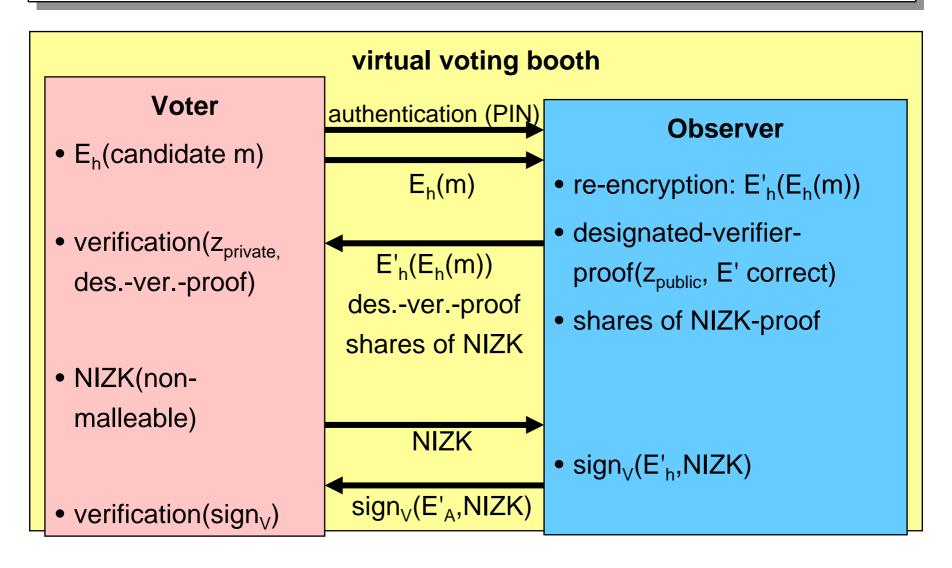
- observer generates randomness and encrypts all candidate choices
- ciphertexts and designated-verifier proof are sent to the voter
- voter re-encrypts his choice and lets the observer digitally sign

receipt-free, but ...

Coercion-Resistant Electronic Voting


The voter can be forced

- a) to cast his vote randomly (randomisation attack)
- b) to enable the coercer to vote instead of the voter (impersonation attack)
- c) to refrain from voting (abstention attack)


[JCJ05]

new notion of security: coercion-resistance

[Sch06a] - Registration

Voting-phase (Overview)

Voting-phase, Tallying

Voter

. . .

E'(m),
 sign_v(E'(m))

E'(m), $sign_V(E'(m))$

Bulletin Board

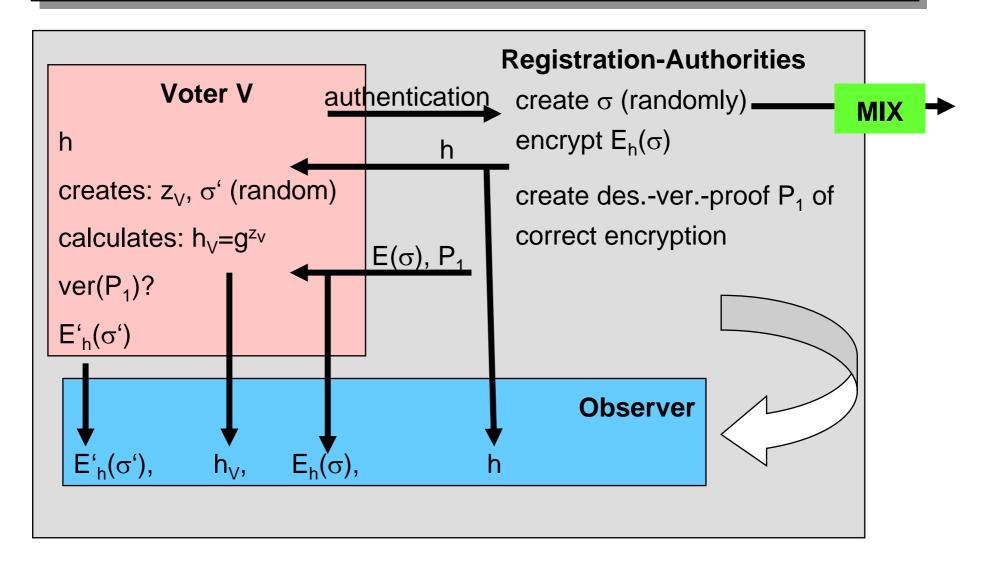
- verification(sign_v)
 (entitled to vote?)
- verification(NIZK)
 (independent vote generation)

verified and encrypted votes

robust verifiable decryption-MIX-cascade A

permutated, plaintext votes

valid candidate choices? tallying!


Coercion-resistance?

- receipt-free (if there are no write-in ballots)
- secure against randomisation-attack
- secure against impersonation-attack:

PINs for observer

- correct PIN → correct ballot generation
- any other 'PIN' with spurious des.-ver. secret z_{private} → false ballot generation and forged des.-ver.-proof
- abstention attack: possible

[Sch06b] - Registration

Voting-phase (Overview)

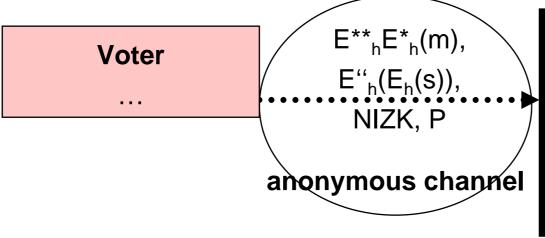
Voter

- E*_h(candidate m)
- verifikation(z_V des.ver.-proof)
- NIZK non-malleable (complete)
- WI-proof P of correct candidate choice

virtual voting booth

authentication (PIN)

 $E^*_h(m)$


 $E^{**}_{h}(E^{*}_{h}(m)),$ des.-ver.-proof shares of NIZK, $\mathsf{E}^{\mathsf{''}}_{\mathsf{h}}(\mathsf{E}_{\mathsf{h}}(\sigma))$

Observer

- re-encryption: E**_h(E*_h(m))
- re-encryption: E"_h(E_h(s))
- designated-verifierproofs(h_V, E** and E" correct)
- shares of NIZK-proof of non-malleability

 $(E^{**}_{h}(E^{*}_{h}(m)), E^{"}_{h}(E_{h}(\sigma))$

Voting-phase, Tallying

Bulletin Board

- ver(P), ver(NIZK)
- plaintext-equivalencetest(credentials)

verified, encrypted votes with encrypted credentials

robust verifiable decryption-MIX-cascade:

permutation of pairs (vote, credential)

Tallying of permutated, decrypted votes with decrypted valid credentials.

Properties

- no unrealistic assumptions (like a physically secure channel)
- receipt-free
- independent vote generation (non-malleability)
- coercion-resistance (no randomisation-attack, no impersonationattack, no abstention-attack)
- permanent secrecy of votes if
 - voter does not give away his correct credential prior to the tallying
 - anonymous channel is not only secured by computational secure encryption but also by organisational arrangements (public voting booths)

Use of an Observer – advantages

- different approach to a coercion-resistant voting-scheme
- no unrealistic assumptions (like a physically secure channel)
- permits permanent secrecy of votes
- efficient receipt-free, but not coercion-resistant voting [Sch06a]

Literature

- [JCJ05] A. Juels, D. Catalano, M. Jakobsson. *Coercion-Resistant Electronic Elections*. WPES '05
- [Sch05] J. Schweisgut. *Elektronische Wahlen mit Observer*. Gl-Kryptotag September 2005, Darmstadt.
- [Sch06a] J. Schweisgut. *Effiziente Elektronische Wahlen mit Observer*. Gl Sicherheit 2006, Magdeburg.
- [Sch06b] J. Schweisgut. *Coercion-Resistant Electronic Elections with Observer*. 2nd International Workshop on Electronic Voting 2006, Bregenz.